%45 تخفیف، با کد YaFateme روی تمام آموزش ها، بمناسبت ولادت حضرت زهرا (س)
زمان باقی مانده
سبد (0)

تبلیغات

ضرب بردارها در متلب

چون که بردارها نمونه های خاصی از ماتریس ها هستند، عملیاتی که در مقاله ی قبل گفته شد(یعنی جمع و تفریق و ضرب اسکالر و ضرب و ترانهاده) تا زمانی که ابعاد آنها صحیح باشند، بر روی آنها به درستی کار خواهد کرد. 

قبلا در بردارها مشاهده کردیم که ترانهاده ی یک بردار سطری، یک بردار ستونی است و ترانهاده ی یک بردار ستونی، یک بردار سطری است. 

برای ضرب کردن بردارها در یکدیگر، تعداد عناصر آنها باید با یکدیگر برابر باشند. و یکی از آنها باید برداری سطری باشد و دیگری باید برداری ستونی باشد. بعنوان مثال، برای بردار ستونی c و بردار سطری r داریم: 

$$c=\begin{bmatrix} 5 \\ 3 \\ 7 \\ 1 \end{bmatrix}\quad r=\begin{bmatrix} 6 & 2 & 3 & 4 \end{bmatrix}$$

 توجه کنید که r دارای ابعاد 4×1 است و c دارای ابعاد 1×4 بنابراین داریم: 

$${ \left[ r \right]  }_{ 1\times 4 }{ \left[ c \right]  }_{ 4\times 1 }={ \left[ s \right]  }_{ 1\times 1 }$$

یعنی در این ضرب، یک عدد اسکالر به دست می آوریم. به صورت زیر:

$$\begin{bmatrix} 6 & 2 & 3 & 4 \end{bmatrix}\begin{bmatrix} 5 \\ 3 \\ 7 \\ 1 \end{bmatrix}=6*5+2*3+3*7+4*1=61$$

 در حالی که اگر ترتیب ضرب را عوض کنیم، یک ماتریس 4×4 به دست می آوریم: 

$${ \left[ c \right]  }_{ 4\times 1 }{ \left[ r \right]  }_{ 1\times 4 }={ \left[ M \right]  }_{ 4\times 4 }$$

 یعنی داریم: 

$$\begin{bmatrix} 5 \\ 3 \\ 7 \\ 1 \end{bmatrix}\begin{bmatrix} 6 & 2 & 3 & 4 \end{bmatrix}=\begin{bmatrix} 30 & 10 & 15 & 20 \\ 18 & 6 & 9 & 12 \\ 42 & 14 & 21 & 28 \\ 6 & 2 & 3 & 4 \end{bmatrix}$$

 این عملیات را در متلب می توان با استفاده از عملگر * انجام داد. با استفاده از این عملگر می توان عملیات ضرب را انجام داد. ابتدا بردار ستونی c و سپس بردار سطری r را ایجاد می کنیم: 

 

 


برای بردارها عملیات های خاصی نیز وجود دارند: ضرب نقطه ای و ضرب خارجی.

ضرب نقطه ای (یا همان ضرب داخلی) دو بردار a و b به صورت \(a\bullet b\) نوشته می شود و به صورت زیر تعریف می شود:  

 $${ a }_{ 1 }{ b }_{ 1 }+{ a }_{ 2 }{ b }_{ 2 }+{ a }_{ 3 }{ b }_{ 3 }+...+{ a }_{ n }{ b }_{ n }=\sum _{ i=1 }^{ n }{ { a }_{ i }{ b }_{ i } } $$

 به طوری که a و b هرکدام n عنصر دارند و \(\quad { a }_{ i }\) و \(\quad { b }_{ i }\) عناصر درون این بردارها هستند. به عبارت دیگر، این ضرب مشابه با ضرب ماتریس ها به هنگام ضرب بردار سطری a در بردار ستونی b است. و حاصل یک عدد اسکالر خواهد بود. 

 برای انجام ضرب نقطه ای در متلب، می توانیم با استفاده از علامت * ماتریس اول را در ترانهاده ی ماتریس دوم ضرب کنیم. و یا اینکه می توانیم از تابع ()dot در متلب استفاده کنیم: 

مثال

 


ضرب داخلی دو بردار a و b یعنی \(a\times b\) تنها زمانی تعریف می شود که  هر دوی a و b تنها سه عنصر داشته باشند. برای انجام این کار می توانیم از ضرب دو ماتریس استفاده کنیم به طوری که ماتریس اول(به شیوه ای خاص) شامل عناصر بردار a و ماتریس دوم شامل عناصر بردار b باشد: 

 $$a\times b=\begin{bmatrix} 0 & { -a }_{ 3 } & { a }_{ 2 } \\ { a }_{ 3 } & 0 & { -a }_{ 1 } \\ { -a }_{ 2 } & { a }_{ 1 } & 0 \end{bmatrix}\begin{bmatrix} { b }_{ 1 } \\ { b }_{ 2 } \\ { b }_{ 3 } \end{bmatrix}=\begin{bmatrix} { a }_{ 2 }{ b }_{ 3 }-{ a }_{ 3 }{ b }_{ 2 }, & { a }_{ 3 }{ b }_{ 1 }-{ a }_{ 1 }{ b }_{ 3 }, & { a }_{ 1 }{ b }_{ 2 }-{ a }_{ 2 }{ b }_{ 1 } \end{bmatrix}$$

 متلب یک تابع داخلی به نام cross دارد که این کار را به راحتی برای ما انجام می دهد: 

مثال

 

تمامی محصولات و خدمات این وبسایت، حسب مورد دارای مجوزهای لازم از مراجع مربوطه می‌باشند و فعالیت‌های این سایت تابع قوانین و مقررات جمهوری اسلامی ایران است.
logo-samandehi مجوز نشر دیجیتال از وزرات فرهنگ و ارشاد اسلامی پرداخت آنلاین -  بانک ملت معرفی بیاموز در شبکه سه پرداخت آنلاین - بانک اقتصاد نوین پرداخت آنلاین - بانک سامان
 
دوره های آموزشی راه اندازی کسب و کارهای اینترنتی
تبلیغات اینترنتی